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Abstract

A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length sub-
jected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent mate-
rial properties are both taken into account. The temperature field considered is assumed to be a uniform distribution
over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-
dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume
fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von
Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects
of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections
of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is
employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations
concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to
combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the
temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have
a small effect on the imperfection sensitivity of the functionally graded shell.
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1. Introduction

Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn
considerable attention. Typically, FGMs are made from a mixture of metals and ceramics and are further
characterized by a smooth and continuous change of the mechanical properties from one surface to an-
other. It has been reported that the weakness of the fiber reinforced laminated composite materials, such
as debonding, huge residual stress, locally largely plastic deformations, etc., can be avoided or reduced
in FGMs (Noda, 1991; Tanigawa, 1995). Hence, FGMs are possessed of an enormous application poten-
tial, especially for working in the high temperature environments. With the increased usage of these mate-
rials, it is important to understand the buckling and postbuckling behaviors of FGM cylindrical shells
subjected to mechanical loads in thermal environments.

Many initial postbuckling or fully nonlinear postbuckling studies of isotropic and composite laminated
cylindrical shells have been performed by the classical and/or shear deformation shell theory. However,
investigations on the buckling and postbuckling analysis of FGM cylindrical shells under thermal or
mechanical loading are limited in number. Shahsiah and Eslami (2003a,b) presented the buckling temper-
ature of simply supported FGM cylindrical shells under two cases of thermal loading, i.e. uniform temper-
ature rise, linear and nonlinear gradient through the thickness, based on the first order shear deformation
shell theory. In their analysis the material properties were considered to be independent of temperature.
Shen (2002, 2003) studied the buckling and postbuckling of FGM cylindrical thin shells subjected to axial
compression or lateral pressure in thermal environments. In the above studies, the material properties were
considered to be temperature-dependent and the effect of temperature rise on the postbuckling behavior
was reported. Recently, Shen (2004) gave a thermal postbuckling analysis of FGM cylindrical thin shells
subjected to a uniform temperature rise. It should be noted that in the above studies the shells are consid-
ered as being relatively thin and therefore the transverse shear deformation is usually not accounted for. On
the other hand, ceramics and the metals used in FGM do store different amounts of heat. This leads to a
non-uniform distribution of temperature through the plate thickness, especially when the plate is thick.
Hence the heat conduction usually occurs (Tanigawa et al., 1996; Kim and Noda, 2002), but it is not ac-
counted for in the above studies. This is because when the material properties are assumed to be functions
of temperature and position, and the temperature is also assumed to be a function of position, the problem
becomes very difficult.

The present work attempts to solve this problem, that is, to provide analytical solution for the post-
buckling of FGM cylindrical shell of finite length subjected to combined axial and radial loads in ther-
mal environments. Heat conduction and temperature-dependent material properties are both taken into
account. The temperature field considered is assumed to be a uniform distribution over the shell surface
and varied in the thickness direction only. Material properties are assumed to be temperature-depen-
dent, and graded in the thickness direction according to a simple power law distribution in terms of
the volume fractions of the constituents. The formulations are based on Reddy�s higher order shear
deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity and including ther-
mal effects. The boundary layer theory suggested by Shen and Chen (1988, 1990) is extended to the case
of FGM cylindrical shells of finite length. A singular perturbation technique is employed to determine
the interactive buckling loads and postbuckling equilibrium paths. The nonlinear prebuckling deforma-
tions and initial geometric imperfections of the shell are both taken into account but, for simplicity, the
form of initial geometric imperfection is assumed to be the same as the initial buckling mode of the
shell. The numerical illustrations show the full nonlinear postbuckling response of FGM cylindrical
shells subjected to combined axial and radial mechanical loads and under different sets of environmen-
tal conditions.
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2. Theoretical development

Consider an FGM circular cylindrical shell with mean radius R, length L and thickness t, which is made
from a mixture of ceramics and metals. The shell is referred to a coordinate system (X,Y,Z) in which X and
Y are in the axial and circumferential directions of the shell and Z is in the direction of the inward normal
to the middle surface. The corresponding displacement are designated by U , V and W . Wx and Wy are the
rotations of the normals to the middle surface with respect to the Y- and X-axes, respectively. The origin of
the coordinate system is located at the end of the shell on the middle plane. The shell is assumed to be geo-
metrically imperfect, exposed to elevated temperature, and subjected to two loads combined out of a uni-
form external pressure q and axial load P. Denoting the initial geometric imperfection by W

�ðX ; Y Þ, let W
(X,Y) be the additional deflection and F ðX ; Y Þ be the stress function for the stress resultants defined by
Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy , where a comma denotes partial differentiation with respect to the
corresponding coordinates.

We assume that the composition is varied from the outer to the inner surface, i.e. the outer surface
(Z = �t/2) of the shell is ceramic-rich whereas the inner surface (Z = t/2) is metal-rich. In such a way,
the effective material properties P, like Young�s modulus E or thermal expansion coefficient a, can be ex-
pressed as
P ¼ P cV c þ PmV m ð1Þ

in which Pc and Pm denote the temperature-dependent properties of the ceramic and metal, respectively,
and may be expressed as a function of temperature (Touloukian, 1967)
P ¼ P 0ðP�1T�1 þ 1þ P 1T þ P 2T 2 þ P 3T 3Þ ð2Þ

in which T = T0 + DT and T0 = 300 K (room temperature), P0, P�1, P1, P2 and P3 are the coefficients of
temperature T (K) and are unique to the constituent materials.

Vc and Vm are the ceramic and metal volume fractions and are related by
V c þ V m ¼ 1 ð3Þ

and we assume the volume fraction Vm follows a simple power law as
V m ¼ 2Z þ t
2t

� �N

ð4Þ
where the volume fraction index N dictates the material variation profile through the shell panel thickness
and may be varied to obtain the optimum distribution of component materials.

It is assumed that the effective Young�s modulus E and thermal expansion coefficient a are temperature-
dependent, whereas the thermal conductivity j is independent to the temperature. Poisson�s ratio m depends
weakly on temperature change and is assumed to be a constant. From Eqs. (1)–(4), one has
EðZ; T Þ ¼ ½EcðT Þ � EmðT Þ�
2Z þ t
2t

� �N

þ EmðT Þ ð5aÞ

aðZ; T Þ ¼ ½acðT Þ � amðT Þ�
2Z þ t
2t

� �N

þ amðT Þ ð5bÞ

jðZÞ ¼ ðjc � jmÞ
2Z þ t
2t

� �N

þ jm ð5cÞ
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We assume that the temperature variation occurs in the thickness direction only and one dimensional tem-
perature field is assumed to be constant in the XY plane of the shell. In such a case, the temperature dis-
tribution along the thickness can be obtained by solving a steady-state heat transfer equation
� d

dZ
jðZÞ dT

dZ

� �
¼ 0 ð6Þ
This equation is solved by imposing boundary condition of T = TU at Z = �t/2 and T = TL at Z = t/2.
The solution of this equation, by means of polynomial series, is
T ðZÞ ¼ TU þ ðT L � TUÞgðZÞ ð7Þ

and
gðZÞ ¼ 1

C
2Z þ t
2t

� �
� jmc

ðN þ 1Þjc

2Z þ t
2t

� �Nþ1

þ j2
mc

ð2N þ 1Þj2
c

2Z þ t
2t

� �2Nþ1
"

� j3
mc

ð3N þ 1Þj3
c

2Z þ t
2t

� �3Nþ1

þ j4
mc

ð4N þ 1Þj4
c

2Z þ t
2t

� �4Nþ1

� j5
mc

ð5N þ 1Þj5
c

2Z þ t
2t

� �5Nþ1
#

ð8aÞ

C ¼ 1� jmc

ðN þ 1Þjc

þ j2
mc

ð2N þ 1Þj2
c

� j3
mc

ð3N þ 1Þj3
c

þ j4
mc

ð4N þ 1Þj4
c

� j5
mc

ð5N þ 1Þj5
c

ð8bÞ
where jmc = jm � jc. In particular, for an isotropic material, Eq. (7) may then be expressed as
T ðZÞ ¼ TU þ T L

2
þ T L � TU

t
Z ð9Þ
From Eqs. (5a), (5b) and (7), it can be seen that now Ec, Em, ac and am are all functions of temperature
and position.

Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the
transverse shear strains are assumed to be parabolically distributed across the shell thickness and which
contains the same number of dependent unknowns as in the first order shear deformation theory. Based
on Reddy�s higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlin-
earity and including thermal effects, the governing differential equations for an FGM cylindrical shell can
be derived in terms of a stress function F , two rotations Wx and Wy , and a transverse displacement W , along
with the initial geometric imperfection W

�
. They are
eL11ðW Þ � eL12ðWxÞ � eL13ðWyÞ þ eL14ðF Þ � eL15ðN
TÞ � eL16ðM

TÞ � 1

R
F ;xx ¼ eLðW þ W

�
; F Þ ð10Þ

eL21ðF Þ þ eL22ðWxÞ þ eL23ðWyÞ � eL24ðW Þ � eL25ðN
TÞ þ 1

R
W ;xx ¼ � 1

2
eLðW þ 2W

�
;W Þ ð11Þ

eL31ðW Þ þ eL32ðWxÞ � eL33ðWyÞ þ eL34ðF Þ � eL35ðN
TÞ � eL36ðS

TÞ ¼ 0 ð12Þ

eL41ðW Þ � eL42ðWxÞ þ eL43ðWyÞ þ eL44ðF Þ � eL45ðN
TÞ � eL46ðS

TÞ ¼ 0 ð13Þ
where all the linear operators eLijð Þ and the nonlinear operator eLð Þ are defined as in Shen and Li (2002).
The forces N

T
, moments M

T
and higher-order moments P

T
caused by elevated temperature are defined

by
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2664
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T

x

S
T

y

S
T
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266664
377775 ¼

M
T

x

M
T

y

M
T

xy

26664
37775� 4

3t2

P
T

x

P
T

y

P
T

xy

26664
37775 ð14bÞ
where DT = T(Z) � T0 is temperature rise from some reference temperature T0 at which there are no ther-
mal strains, and
Ax

Ay

Axy

2664
3775 ¼ �

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2664
3775

1 0

0 1

0 0

2664
3775 aðZ; T Þ

aðZ; T Þ

" #
ð15Þ
where the thermal expansion coefficient a is given in detail in Eq. (5b), and
Q11 ¼ Q22 ¼
EðZ; T Þ
1� m2

; Q12 ¼
mEðZ; T Þ
1� m2

; Q16 ¼ Q26 ¼ 0; Q66 ¼
EðZ; T Þ
2ð1þ mÞ ð16Þ
in which E is also given in detail in Eq. (5a).
The two end edges of the shell are assumed to be simply supported or clamped, so that the boundary

conditions areX = 0, L:
W ¼ Wy ¼ 0;Mx ¼ Px ¼ 0 ðsimply supportedÞ ð17aÞ

W ¼ Wx ¼ Wy ¼ 0 ðclampedÞ ð17bÞZ 2pR

0

Nx dY þ 2pRtrx þ pR2qa ¼ 0 ð17cÞ
where a = 0 and a = 1 for lateral and hydrostatic pressure loading case, respectively, and rx is the average
axial compressive stress, and Mx is the bending moment, Px is the higher-order moment as defined in Reddy
and Liu (1985). Also, we have the closed (or periodicity) condition
Z 2pR

0

oV
oY

dY ¼ 0 ð18aÞ
or
 Z 2pR

0

"
A�
22

o2F

oX 2
þ A�

12

o2F

oY 2

� �
þ B�

21 �
4

3t2
E�
21

� �
oWx

oX
þ B�

22 �
4

3t2
E�
22

� �
oWy

oY
� 4

3t2
E�
21

o2W

oX 2
þ E�

22

o2W

oY 2

� �

þ W
R

� 1

2

oW
oY

� �2

� oW
oY

oW
�

oY
� A�

12N
T

x þ A�
22N

T

y

� �#
dY ¼ 0 ð18bÞ
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Because of Eq. (18), the in-plane boundary condition V ¼ 0 (at X = 0, L) is not needed in Eq. (17).
The average end-shortening relationship is defined as
Dx

L
¼ � 1

2pRL

Z 2pR

0

Z L

0

oU
oX

dX dY

¼ � 1

2pRL

Z 2pR

0

Z L

0

"
A�
11

o
2F

oY 2
þ A�

12

o
2F

oX 2

� �
þ B�

11 �
4

3t2
E�
11

� �
oWx

oX
þ B�

12 �
4

3t2
E�
12

� �
oWy

oY

� 4

3t2
E�
11

o2W

oX 2
þ E�

12

o2W

oY 2

� �
� 1

2

oW
oX

� �2

� oW
oX

oW
�

oX
� A�

11N
T

x þ A�
12N

T

y

� �#
dX dY ð19Þ
In the above equations and what follows, the reduced stiffness matrices [A�
ij], [B

�
ij], [D

�
ij], [E

�
ij], [F

�
ij] and

[H �
ij] (i, j = 1, 2, 6) are functions of temperature and position, determined through relationships (Shen

and Li, 2002)
A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B; E� ¼ �A�1E; F� ¼ F� EA�1B;

H� ¼ H� EA�1E ð20Þ

where Aij,Bij etc., are the shell stiffnesses, defined in the standard way (Reddy and Liu, 1985).
3. Analytical method and asymptotic solutions

Having developed the theory, we are now in a position to solve Eqs. (10)–(13) with boundary condition
(17). Before proceeding, it is convenient first to define the following dimensionless quantities (with cijk in
Eqs. (28) and (29) below are defined as in Shen and Li (2002))
x ¼ pX=L; y ¼ Y =R; b ¼ L=pR;Z ¼ L2=Rt; e ¼ ðp2R=L2Þ½D�
11D

�
22A

�
11A

�
22�

1=4

ðW ;W �Þ ¼ eðW ;W
�Þ=½D�

11D
�
22A

�
11A

�
22�

1=4
; F ¼ e2F =½D�

11D
�
22�

1=2

ðWx;WyÞ ¼ e2ðWx;WyÞðL=pÞ=½D�
11D

�
22A

�
11A

�
22�

1=4
; c12 ¼ ðD�

12 þ 2D�
66ÞD�

11

c22 ¼ ðA�
12 þ A�

66=2Þ=A�
22; c14 ¼ ½D�

22=D
�
11�

1=2
; c24 ¼ ½A�

11=A
�
22�

1=2
; c5 ¼ �A�

12=A
�
22

ðc31; c41Þ ¼ ðL2=p2ÞðA55 � 8D55=t2 þ 16F 55=t4;A44 � 8D44=t2 þ 16F 44=t4Þ=D�
11

ðcT1; cT2Þ ¼ ðAT
x ;A

T
y ÞR½A�

11A
�
22=D

�
11D

�
22�

1=4

ðMx; PxÞ ¼ e2ðMx; 4Px=3t2ÞðL2=p2Þ=D�
11½D�

11D
�
22A

�
11A

�
22�

1=4

kp ¼ rx=ð2=RtÞ½D�
11D

�
22=A

�
11A

�
22�

1=4
; kq ¼ qð3Þ3=4LR3=2½A�

11A
�
22�

1=8
=4p½D�

11D
�
22�

3=8

dp ¼ ðDx=LÞ=ð2=RÞ½D�
11D

�
22A

�
11A

�
22�

1=4
; dq ¼ ðDx=LÞð3Þ3=4LR1=2=4p½D�

11D
�
22A

�
11A

�
22�

3=8

ð21Þ
in which AT
x ¼ AT

y are defined by
AT
x

AT
y

" #
T 1 ¼ �

Z t=2

�t=2

Ax

Ay

� �
T ðZÞdZ ð22Þ
where T1 = (TU + TL � 2T0)/2, and the details of AT
x can be found in Appendix A.

The nonlinear Eqs. (10)–(13) may then be written in dimensionless form as
e2L11ðW Þ � eL12ðWxÞ � eL13ðWyÞ þ ec14L14ðF Þ � c14F ;xx ¼ c14b
2LðW þ W �; F Þ þ c14

4

3
ð3Þ1=4kqe3=2 ð23Þ
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L21ðF Þ þ c24L22ðWxÞ þ c24L23ðWyÞ � ec24L24ðW Þ þ c24W ;xx ¼ � 1

2
c24b

2LðW þ 2W �;W Þ ð24Þ

eL31ðW Þ þ L32ðWxÞ � L33ðWyÞ þ c14L34ðF Þ ¼ 0 ð25Þ

eL41ðW Þ � L42ðWxÞ þ L43ðWyÞ þ c14L44ðF Þ ¼ 0 ð26Þ

where all the dimensionless operators Lij( ) and L( ) are defined as in Shen and Li (2002).

For most FGMs ½D�
11D

�
22A

�
11A

�
22�

1=4 ffi 0:3t. Moreover, when Z ¼ ðL2=RtÞ > 2:96, then from Eq. (21) e < 1.
In particular, for homogeneous isotropic cylindrical shells, e ¼ p2=ZB

ffiffiffiffiffi
12

p
, where ZB ¼ ðL2=RtÞ½1� m2�1=2 is

the Batdorf shell parameter, which should be greater than 2.85 in the case of classical linear buckling anal-
ysis (Batdorf, 1947). In practice, the shell structure will have Z P 10, so that we always have e � 1. When
e < 1, Eqs. (23)–(26) are of the boundary layer type, from which nonlinear prebuckling deformations, large
deflections in the postbuckling range, and initial geometric imperfections of the shell, can be considered
simultaneously.

The boundary conditions of Eq. (17) become
W ¼ Wy ¼ 0; Mx ¼ Px ¼ 0 ðsimply supportedÞ ð27aÞ

W ¼ Wx ¼ Wy ðclampedÞ ð27bÞ

1

2p

Z 2p

0

b2 o
2F
oy2

dy þ 2kpeþ
2

3
ð3Þ1=4kqe3=2a ¼ 0 ð27cÞ
and the closed condition becomes
Z 2p

0

" 
o2F
ox2

� c5b
2 o

2F
oy2

!
þ c24 c220

oWx

ox
þ c522b

oWy

oy

� �
� ec24 c240

o2W
ox2

þ c622b
2 o

2W
oy2

� �
þ c24W

� 1

2
c24b

2 oW
oy

� �2

� c24b
2 oW
oy

oW �

oy
þ eðcT2 � c5cT1ÞT 1

#
dy ¼ 0 ð28Þ
In this section two loading conditions will be considered, so that the unit end-shortening relationship
may be written in two dimensionless forms as
dq ¼ � ð3Þ3=4

8p2c24
e�3=2

Z 2p

0

Z p

0

 
c224b

2 o
2F
oy2

� c5
o2F
ox2

!
þ c24 c511

oWx

ox
þ c233b

oWy

oy

� �"

� ec24 c611
o2W
ox2

þ c244b
2 o

2W
oy2

� �
� 1

2
c24

oW
ox

� �2

� c24
oW
ox

oW �

ox
þ eðc224cT1 � c5cT2ÞT 1

#
dxdy ð29aÞ

dp ¼ � 1

4p2c24
e�1

Z 2p

0

Z p

0

"
c224b

2 o
2F
oy2

� c5
o2F
ox2

� �
þ c24 c511

oWx

ox
þ c233b

oWy

oy

� �

� ec24 c611
o
2W
ox2

þ c244b
2 o

2W
oy2

� �
� 1

2
c24

oW
ox

� �2

� c24
oW
ox

oW �

ox
þ eðc224cT1 � c5cT2ÞT 1

#
dxdy ð29bÞ
By virtue of the fact that T1 is assumed to be uniform, the thermal coupling in Eqs. (10)–(13) vanishes, but
terms in T1 intervene in Eqs. (28) and (29).

Applying Eqs. (23)–(19), the postbuckling behavior of perfect and imperfect FGM cylindrical shells sub-
jected to combined axial and radial loads in thermal environments is determined by means of a singular
perturbation technique. The essence of this procedure, in the present case, is to assume that
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W ¼ wðx; y; eÞ þ eW ðx; n; y; eÞ þ bW ðx; f; y; eÞ

F ¼ f ðx; y; eÞ þ eF ðx; n; y; eÞ þ bF ðx; f; y; eÞ
Wx ¼ wxðx; y; eÞ þ eWxðx; n; y; eÞ þ bWxðx; f; y; eÞ

Wy ¼ wyðx; y; eÞ þ eWyðx; n; y; eÞ þ bWyðx; f; y; eÞ

ð30Þ
where e is a small perturbation parameter (provided Z > 2:96) as defined in Eq. (21) and w(x,y, e), f(x,y, e),
wx(x,y, e), and wy (x,y, e) are called the outer or regular solutions of the shell. eW ðx; n; y; eÞ; eF ðx; n; y; eÞ;eWxðx; n; y; eÞ; eWyðx; n; y; eÞ and bW ðx; f; y; eÞ; bF ðx; f; y; eÞ; bWxðx; f; y; eÞ; bWyðx; f; y; eÞ are the boundary layer
solutions near the x = 0 and x = p edges, respectively, and n and f are the boundary layer variables, defined
as
n ¼ x=
ffiffi
e

p
; f ¼ ðp� xÞ=

ffiffi
e

p
ð31Þ
This means that for homogeneous isotropic cylindrical shells, the width of the boundary layers is of
order

ffiffiffiffiffi
Rt

p
. In Eq. (30) the regular and boundary layer solutions are taken in the forms of perturbation

expansions as
wðx; y; eÞ ¼
X
j¼1

ej=2wj=2ðx; yÞ; f ðx; y; eÞ ¼
X
j¼0

ej=2fj=2ðx; yÞ

wxðx; y; eÞ ¼
X
j¼1

ej=2ðwxÞj=2ðx; yÞ; wyðx; y; eÞ ¼
X
j¼1

ej=2ðwyÞj=2ðx; yÞ
ð32aÞ

eW ðx; n; y; eÞ ¼
X
j¼0

ej=2þ1 eW j=2þ1ðx; n; yÞ; eF ðx; n; y; eÞ ¼X
j¼0

ej=2þ2eF j=2þ2ðx; n; yÞ

eWxðx; n; y; eÞ ¼
X
j¼0

eðjþ3Þ=2ð eWxÞðjþ3Þ=2ðx; n; yÞ; eWyðx; n; y; eÞ ¼
X
j¼0

ej=2þ2ð eWyÞj=2þ2ðx; n; yÞ
ð32bÞ

bW ðx; f; y; eÞ ¼
X
j¼0

ej=2þ1 bW j=2þ1ðx; f; yÞ; bF ðx; f; y; eÞ ¼X
j¼0

ej=2þ2bF j=2þ2ðx; f; yÞ

bWxðx; f; y; eÞ ¼
X
j¼0

eðjþ3Þ=2ð bWxÞðjþ3Þ=2ðx; f; yÞ; bWyðx; f; y; eÞ ¼
X
j¼0

ej=2þ2ð bWyÞj=2þ2ðx; f; yÞ
ð32cÞ
The initial buckling mode is assumed to have the form
w2ðx; yÞ ¼ Að2Þ
11 sinmx sin ny ð33Þ
and the initial geometric imperfection is assumed to have a similar form
W �ðx; y; eÞ ¼ e2a�11 sinmx sin ny ¼ e2lAð2Þ
11 sinmx sin ny ð34Þ
where l ¼ a�11=A
ð2Þ
11 is the imperfection parameter.

Substituting Eqs. (30)–(32) into Eqs. (23)–(26), collecting the terms of the same order of e, three sets of
perturbation equations are obtained for the regular and boundary layer solutions, respectively. It has been
shown (Shen and Chen, 1988, 1990) that the effect of the boundary layer on the buckling load of the shell
under axial compression is quite different from that of the shell subjected to external pressure. To this end,
two kinds of loading conditions will be considered.

Case (1): high values of external pressure combined with relatively low axial load. Let
P

pR2q
¼ b1 ð35aÞ
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or
2kpe
4
3
ð3Þ1=4kqe3=2

¼ b1
2

ð35bÞ
In this case, the boundary condition of Eq. (27c) becomes
1

2p

Z 2p

0

b2 o
2F
oy2

dy þ 2

3
ð3Þ1=4kqe3=2ðaþ b1Þ ¼ 0 ð36Þ
For convenience we replace (a + b1) with a1 in Eq. (38) below, by using Eqs. (33) and (34) to solve these
perturbation equations of each order, and matching the regular solutions with the boundary layer solutions
at the each end of the shell, so that the asymptotic solutions satisfying the clamped boundary conditions are
constructed as
W ¼ e3=2 Að3=2Þ
00 � Að3=2Þ

00 að3=2Þ01 cos/
xffiffi
e

p þ að3=2Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� ��

� Að3=2Þ
00 að3=2Þ01 cos/

p� xffiffi
e

p þ að3=2Þ10 sin/
p� xffiffi

e
p

� �
exp �#

p� xffiffi
e

p
� ��

þ e2 Að2Þ
11 sinmx sin ny

h i
þ e3 Að3Þ

11 sinmx sin ny
h i

þ e4 Að4Þ
00 þ Að4Þ

11 sinmx sin ny þ Að4Þ
20 cos 2mxþ Að4Þ

02 cos 2ny
h i

þOðe5Þ ð37Þ

F ¼ �1

2
Bð0Þ
00 b2x2 þ a1

y2

2

� �
þ e �1

2
Bð1Þ
00 b2x2 þ a1

y2

2

� �� �
þ e2 �1

2
Bð2Þ
00 b2x2 þ a1

y2

2

� �
þ Bð2Þ

11 sinmx sinny
� �

þ e5=2 Að3=2Þ
00 bð5=2Þ01 cos/

xffiffi
e

p þ bð5=2Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� ��

þ Að3=2Þ
00 bð5=2Þ01 cos/

p� xffiffi
e

p þ bð5=2Þ10 sin/
p� xffiffi

e
p

� �
exp �#

p� xffiffi
e

p
� ��

þ e3 �1

2
Bð3Þ
00 b2x2 þ a1

y2

2

� �� �
þ e4 �1

2
Bð4Þ
00 b2x2 þ a1

y2

2

� �
þ Bð4Þ

20 cos2mxþ Bð4Þ
02 cos 2ny

� �
þOðe5Þ ð38Þ

Wx ¼ e2 Cð2Þ
11 cosmx sin ny þ cð2Þ01 cos/

xffiffi
e

p þ cð2Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� ��

þ cð2Þ01 cos/
p� xffiffi

e
p þ cð2Þ10 sin/

p� xffiffi
e

p
� �

exp �#
p� xffiffi

e
p

� ��
þ e3½Cð3Þ

11 cosmx sin ny�

þ e4½Cð4Þ
11 cosmx sin ny þ Cð4Þ

20 sin 2mx� þOðe5Þ ð39Þ

Wy ¼ e2 Dð2Þ
11 sinmx cos ny

h i
þ e3 Dð3Þ

11 sinmx cos ny
h i

þ e4 Dð4Þ
11 sinmx cos ny þ Dð4Þ

02 sin 2ny
h i

þO e5
� 	

ð40Þ

Note that, because of Eq. (37), the prebuckling deformation of the shell is nonlinear, and all of the coef-
ficients in Eqs. (37)–(40) are related and can be expressed in terms of Að2Þ

11 , but for the sake of brevity the
detailed expressions are not shown, whereas # and / are given in detail in Appendix A.

Next, upon substitution of Eqs. (37)–(40) into the boundary condition (36) and into Eq. (29a), the post-
buckling equilibrium paths can be written as
kq ¼
1

4
ð3Þ3=4e�3=2 kð0Þq þ kð2Þq ðAð2Þ

11 e
2Þ2 þ � � �

h i
ð41Þ
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and
dq ¼ dð0Þq � dðT Þq þ dð2Þq Að2Þ
11 e

2
� �2

þ � � � ð42Þ
In Eqs. (41) and (42), (Að2Þ
11 e

2) is taken as the second perturbation parameter relating to the dimensionless
maximum deflection. If the maximum deflection is assumed to be at the point (x,y) = (p/2m,p/2n), then
Að2Þ
11 e

2 ¼ W m �H1W 2
m þ � � � ð43aÞ
where Wm is the dimensionless form of the maximum deflection of the shell that can be written as
W m ¼ 1

C3

e
t

½D�
11D

�
22A

�
11A

�
22�

1=4

W
t
þH2

" #
ð43bÞ
All symbols used in Eqs. (41)–(43) and Eqs. (50)–(52) below are also described in detail in Appendix A.
Case (2): high values of axial compression combined with relatively low external pressure. Let
pR2q
P

¼ b2 ð44aÞ
or
4

3
ð3Þ1=4kqe3=2

2kpe
¼ 2b2 ð44bÞ
In this case, the boundary condition of Eq. (27c) becomes
1

2p

Z 2p

0

b2 o
2F
oy2

dy þ 2kpeð1þ ab2Þ ¼ 0 ð45Þ
Similarly, by taking a2 = 2b2/(1 + ab2) and using a singular perturbation procedure, the asymptotic solu-
tions satisfying the clamped boundary conditions are obtained as
W ¼ e Að1Þ
00 � Að1Þ

00 að1Þ01 cos/
xffiffi
e

p þ að1Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� ��

�Að1Þ
00 að1Þ01 cos/

p� xffiffi
e

p þ að1Þ10 sin/
p� xffiffi

e
p

� �
exp �#

p� xffiffi
e

p
� ��

þ e2 Að2Þ
11 sinmx sin ny þ Að2Þ

02 cos 2ny � ðAð2Þ
02 cos 2nyÞ að1Þ01 cos/

xffiffi
e

p þ að1Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� ��

�ðAð2Þ
02 cos 2nyÞ að1Þ01 cos/

p� xffiffi
e

p þ að1Þ10 sin/
p� xffiffi

e
p

� �
exp �#

p� xffiffi
e

p
� ��

þ e3 Að3Þ
11 sinmx sin ny þ Að3Þ

02 cos 2ny
h i

þ e4 Að4Þ
00 þ Að4Þ

11 sinmx sin ny þ Að4Þ
20 cos 2mxþ Að4Þ

02 cos 2ny
h

þ Að4Þ
13 sinmx sin 3ny þ Að4Þ

04 cos 4ny
i
þOðe5Þ ð46Þ

F ¼ � 1

2
Bð0Þ
00 ða2b

2x2 þ y2Þ þ e � 1

2
Bð1Þ
00 ða2b

2x2 þ y2Þ
� �

þ e2 � 1

2
Bð2Þ
00 ða2b

2x2 þ y2Þ þ Bð2Þ
11 sinmx sin ny

�
þ Að1Þ

00 bð2Þ01 cos/
xffiffi
e

p þ bð2Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� �

þ Að1Þ
00 bð2Þ01 cos/

p� xffiffi
e

p þ bð2Þ10 sin/
p� xffiffi

e
p

� �
exp �#

p� xffiffi
e

p
� ��
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þ e3 �1

2
Bð3Þ
00 ða2b

2x2 þ y2Þ þ Bð3Þ
02 cos 2ny þ ðAð2Þ

02 cos 2nyÞ bð3Þ01 cos/
xffiffi
e

p þ bð3Þ10 sin/
xffiffi
e

p
� �

exp �#
xffiffi
e

p
� ��

þðAð2Þ
02 cos 2nyÞ bð3Þ01 cos/

p� xffiffi
e

p þ bð3Þ10 sin/
p� xffiffi

e
p

� �
exp �#

p� xffiffi
e

p
� ��

þ e4 �1

2
Bð4Þ
00 ða2b

2x2 þ y2Þ þ Bð4Þ
20 cos 2mxþ Bð4Þ

02 cos 2ny þ Bð4Þ
13 sinmx sin 3ny

� �
þOðe5Þ ð47Þ

Wx ¼ e3=2 Að1Þ
00 c

ð3=2Þ
10 sin/

xffiffi
e

p exp �#
xffiffi
e

p
� �

þ Að1Þ
00 c

ð3=2Þ
10 sin/

p� xffiffi
e

p exp �#
p� xffiffi

e
p

� �� �
þ e2½Cð2Þ

11 cosmx sin ny�

þ e5=2 ðAð2Þ
02 cos 2nyÞcð5=2Þ10 sin/

xffiffi
e

p exp �#
xffiffi
e

p
� �

þ ðAð2Þ
02 cos 2nyÞcð5=2Þ10 sin/

p� xffiffi
e

p exp �#
p� xffiffi

e
p

� �� �
þ e3½Cð3Þ

11 cosmx sin ny� þ e4 Cð4Þ
11 cosmx sin ny þ Cð4Þ

20 sin 2mxþ Cð4Þ
13 cosmx sin 3ny

h i
þOðe5Þ ð48Þ

Wy ¼ e2 Dð2Þ
11 sinmx cos ny

h i
þ e3

�
Dð3Þ

11 sinmx cos ny þ Dð3Þ
02 sin 2ny

� Að2Þ
02 2nb sin 2ny

� �
dð3Þ
01 cos/

xffiffi
e

p þ dð3Þ
10 sin/

xffiffi
e

p
� �

exp �#
xffiffi
e

p
� �

� Að2Þ
02 2nb sin 2ny

� �
dð3Þ
01 cos/

p� xffiffi
e

p þ dð3Þ
10 sin/

p� xffiffi
e

p
� �

exp �#
p� xffiffi

e
p

� ��
þ e4 Dð4Þ

11 sinmx cos ny þ Dð4Þ
02 sin 2ny þ Dð4Þ

13 sinmx cos 3ny
h i

þOðe5Þ ð49Þ
Next, upon substitution of Eqs. (46)–(49) into the boundary condition (45) and into Eq. (29b), the post-
buckling equilibrium paths can be written as
kp ¼
1

1þ ab2
½kð0Þp � kð2Þp ðAð2Þ

11 eÞ
2 þ kð4Þp ðAð2Þ

11 eÞ
4 þ � � �� ð50Þ
and
dp ¼ dð0Þp � dðT Þp þ dð2Þp ðAð2Þ
11 eÞ

2 þ dð4Þp ðAð2Þ
11 eÞ

4 þ � � � ð51Þ
In Eqs. (50) and (51), similarly, (Að2Þ
11 e) is taken as the second perturbation parameter in this case, and we

have
Að2Þ
11 e ¼ W m �H3W 2

m þ � � � ð52aÞ
and the dimensionless maximum deflection of the shell is written as
W m ¼ 1

C3

t

½D�
11D

�
22A

�
11A

�
22�

1=4

W
t
þH4

" #
ð52bÞ
Eqs. (41)–(43) and (50)–(52) can be employed to obtain numerical results for full nonlinear postbuckling
load-shortening or load–deflection curves of FGM cylindrical shells subjected to combined axial and radial
loads in thermal environments. Buckling under external pressure and buckling under axial compression
follow as two limiting cases. By increasing b1 and b2 respectively, the interaction curve of an FGM
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cylindrical shell under combined loading can be constructed with these two lines. Note that since b2 = 1/b1
only one load-proportional parameter should be determined in advance. The initial buckling load of a per-
fect shell can readily be obtained numerically, by setting W

�
=t ¼ 0 (or l = 0), while taking W =t ¼ 0 (note

that Wm 5 0). In this case, the minimum buckling load is determined by considering Eq. (41) or (50) for
various values of the buckling mode (m,n), which determine the number of half-waves in the X-direction
and of full waves in the Y-direction.
4. Numerical results and discussions

Numerical results are presented in this section for FGM cylindrical shells with two constituent materials.
Two sets of material mixture are considered. One is silicon nitride and stainless steel, referred to as Si3N4/
SUS304, and the other is zirconium oxide and titanium alloy, referred to as ZrO2/Ti–6Al–4V. However, the
analysis is equally applicable to other types of FGMs as well. Typical values for Young�s modulus E (in Pa),
thermal expansion coefficient a (in K�1) and the thermal conductivity j (in W/mK) of these materials are
listed in Table 1 (from Reddy and Chin, 1998). Poisson�s ratio m is assumed to be a constant, and m = 0.28.

The accuracy and effectiveness of the present method for the buckling and postbuckling analysis of iso-
tropic or multilayered cylindrical shells subjected to combined loading of external pressure and axial com-
pression were examined by many comparison studies given in Shen and Chen (1991), Shen et al. (1993), and
Shen (1997, 2001). In addition, the buckling hoop stresses for isotropic thin cylindrical shells subjected to
Table 1
Temperature-dependent coefficients for ceramics and metals, from Reddy and Chin (1998)

Materials P0 P�1 P1 P2 P3

Zirconia E 244.27e+9 0 �1.371e�3 1.214e�6 �3.681e�10
a 12.766e�6 0 �1.491e�3 1.006e�5 �6.778e�11
j 1.7000 – – – –

Silicon nitride E 348.43e+9 0 �3.070e�4 2.160e�7 �8.946e�11
a 5.8723e�6 0 9.095e�4 0 0
j 13.723 – – – –

Ti–6Al–4V E 122.56e+9 0 �4.586e�4 0 0
a 7.5788e�6 0 6.638e�4 �3.147e�6 0
j 1.0000 – – – –

Stainless steel E 201.04e+9 0 3.079e�4 �6.534e�7 0
a 12.330e�6 0 8.086e�4 0 0
j 15.379 – – – –

Table 2
Comparisons of buckling stresses (ry)cr (in N/mm2) for perfect isotropic thin cylindrical shells subjected to combined axial and radial
loads (R = 254 mm, E = 204 kN/mm2, m = 0.3)

L/R R/t b1 Present Galletly et al. (1987)

0.418 304 8 53.706 (15) 58.3 (15)
0.415 308 4 70.531 (16) 78.8 (16)
0.418 304 1.05 92.377 (16) 97.2 (17)
0.415 304 0 103.116 (17) 108.0 (17)
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combined axial and radial loads are calculated and compared in Table 2 with the results obtained by
Galletly et al. (1987) based on the classical shell theory, in which (ry)cr is defined by qcr(R/t). The material
properties adopted are E = 204 kN/mm2 and m = 0.3. It can be seen that the present results agree well but
slightly lower than those of Galletly et al. (1987).

The buckling loads (rcr,qcr) (in MPa) for perfect Si3N4/SUS304 and ZrO2/Ti–6Al–4V thin and moder-
ately thick cylindrical shells under four sets of combined loading conditions, i.e. lateral pressure alone
(b1 = 0), combined loading case (1) (b1 = 10), combined loading case (2) (b2 = 0.01) and axial compression
alone (b2 = 0), and under three sets of environmental conditions, i.e. 1: TU = 300 K, TL = 300 K, 2:
TU = 600 K, TL = 300 K, and 3: TU = 900 K, TL = 300 K, are calculated and compared in Tables 3
and 4. In computation, the shell radius-to-thickness ratio R/t = 300 and 30, Z ¼ 500 and T0 = 300 K. Also,
three values of the volume fraction index N (= 0.2, 1.0 and 2.0) are considered. It is seen that, for the
Si3N4/SUS304 cylindrical shell, the buckling loads are reduced with increases in temperature and with de-
creases in volume fraction index. In contrast, for the ZrO2 /Ti–6Al–4V cylindrical shell, the buckling load is
lower than that of the Si3N4 /SUS304 shell and erratic behavior can be observed in thermal environmental
conditions 2 and 3. Therefore, Si3N4 /SUS304 cylindrical shells are considered in the parametric study only.
Typical results are shown in Figs. 1–6. It is mentioned that in all figures W

�
=t denotes the dimensionless

maximum initial geometric imperfection of the shell.
Table 3
Comparisons of buckling loads (rcr,qcr) (in MPa) for Si3N4/SUS304 and ZrO2/Ti–6Al–4V thin cylindrical shells subjected to combined
axial and radial loads in thermal environments (R/t = 300, Z ¼ 500 and T0 = 300 K)

Materials N TU = 300 K, TL = 300 K TU = 600 K, TL = 300 K TU = 900 K, TL = 300 K

Si3N4/SUS304 0.2 (400.462, 0) (246.056, 0) (183.825, 0)
(394.361, 0.026) (217.875, 0.015) (99.964, 0.007)
(126.572, 0.084) (125.321, 0.084) (125.530, 0.084)
(0, 0.110) (0, 0.109) (0, 0.108)

1.0 (461.427, 0) (299.752 0) (206.328, 0)
(425.393, 0.028) (280.897, 0.019) (133.933, 0.009)
(145.110, 0.097) (140.988, 0.094) (138.753, 0.093)
(0, 0.126) (0, 0.122) (0, 0.119)

2.0 (489.047, 0) (328.230, 0) (216.454, 0)
(448.927, 0.030) (312.739, 0.021) (152.492, 0.010)
(152.776, 0.102) (147.709, 0.098) (143.878, 0.096)
(0, 0.132) (0, 0.127) (0, 0.123)

ZrO2/Ti–6Al–4V 0.2 (204.983, 0) (108.364 0) (155.058, 0)
(189.945, 0.013) (89.714, 0.006) (126.939, 0.008)
(64.795, 0.043) (61.430, 0.041) (63.677, 0.042)
(0, 0.056) (0, 0.053) (0, 0.052)

1.0 (238.124, 0) (112.236, 0) (110.233, 0)
(219.464, 0.015) (31.805, 0.002) (43.875, 0.003)
(74.863, 0.050) (66.923, 0.045) (88.612, 0.059)
(0, 0.065) (0, 0.057) (0, 0.057)

2.0 (253.184, 0) (156.431, 0) (248.205, 0)
(232.300, 0.015) (32.430 0.002) (93.396, 0.006)
(79.017, 0.053) (69.249, 0.046) (105.830, 0.071)
(0, 0.068) (0, 0.058) (0, 0.059)



Table 4
Comparisons of buckling loads (rcr,qcr) (in MPa) for Si3N4/SUS304 and ZrO2/Ti–6Al–4V shear deformable cylindrical shells subjected
to combined axial and radial loads in thermal environments (R/t = 30, Z ¼ 500 and T0 = 300 K)

Materials N TU = 300 K, TL = 300 K TU = 600 K, TL = 300 K TU = 900 K, TL = 300 K

Si3N4/SUS304 0.2 (4110.570, 0) (3790.912, 0) (3493.155, 0)
(3865.174, 2.577) (3785.175, 2.523) (3461.331, 2.308)
(1248.377, 8.323) (1230.890, 8.206) (1216.803, 8.112)
(0, 11.061) (0, 10.905) (0, 10.779)

1.0 (4735.332, 0) (4340.688, 0) (3954.151, 0)
(4420.001, 2.947) (4281.516, 2.854) (3930.001, 2.620)
(1427.560, 9.571) (1383.632, 9.224) (1348.004, 8.987)
(0, 12.648) (0, 12.258) (0, 11.942)

2.0 (5018.193, 0) (4589.686, 0) (4163.306, 0)
(4654.402, 3.103) (4479.271, 2.986) (4142.397, 2.762)
(1503.253, 10.022) (1447.439, 9.650) (1402.305, 9.349)
(0, 13.319) (0, 12.824) (0, 12.423)

ZrO2/Ti–6Al–4V 0.2 (2103.800, 0) (1821.338 0) (1535.098, 0)
(1978.769, 1.319) (1816.877, 1.211) (1430.851, 0.954)
(639.104, 4.261) (601.610, 4.011) (588.425, 3.923)
(0, 5.662) (0, 5.330) (0, 5.210)

1.0 (2443.689, 0) (1779.783, 0) (2371.815, 0)
(2279.964, 1.520) (1745.206, 1.163) (1842.126, 1.228)
(736.376, 4.909) (642.136, 4.281) (609.899, 4.066)
(0, 6.524) (0, 5.688) (0, 5.385)

2.0 (2597.907, 0) (1783.359, 0) (2399.151, 0)
(2407.847, 1.605) (1727.501, 1.152) (1849.098, 1.233)
(777.672, 5.184) (658.553, 4.390) (618.903, 4.126)
(0, 6.890) (0, 5.833) (0, 5.455)
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Fig. 1. Interaction buckling curves for Si3N4/SUS304 cylindrical shells subjected to combined axial and radial loads in three different
sets of thermal environments: (a) thin shells; (b) shear deformable shells.
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Fig. 3. Effect of temperature rise on the postbuckling behavior of Si3N4/SUS304 cylindrical shells subjected to axial compression
combined with lateral pressure: (a) load-shortening; (b) load–deflection.
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Fig. 1 shows the effects of temperature field on the interaction buckling curves of Si3N4/SUS304 thin and
moderately thick cylindrical shells under combined loading cases, in which Rx = q/qcr and Ry = rx/rcr,
where qcr and rcr are critical buckling loads for the shell with N = 0 under lateral pressure alone or axial
compression alone, and under environmental condition TU = 300 K and TL = 300 K. Then Fig. 2 shows
the effects of volume fraction index on the interaction buckling curves of Si3N4/SUS304 thin and moder-
ately thick cylindrical shells under environmental condition TU = 600 K and TL = 300 K. It is seen that
the temperature field or volume fraction index has a significant effect on the shape of the interaction buck-
ling curves. Of particular interest is the change from concave to convex behavior for the thin shell (see Figs.
1(a) and 2(a)).

Fig. 3 gives the postbuckling load-shortening and load–deflection curves for perfect (W
�
=t ¼ 0) and

imperfect (W
�
=t ¼ 0:05), Si3N4/SUS304 moderately thick cylindrical shells (R/t = 30) with volume fraction

index N = 2.0 under combined loading case (2) with the load-proportional parameter b2 = 0.0 (referred to
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as I) and 0.01 (referred to as II), and under three sets of thermal environmental conditions. It can be seen
that the well-known ‘‘snap-through’’ behavior of shells occurs and the imperfection sensitivity can be pre-
dicted. Note that the postbuckling equilibrium path of the FGM shell is similar to that of the shell made
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from homogeneous isotropic materials. Clearly the buckling loads are reduced with increases in tempera-
ture, and the postbuckling load–deflection curve becomes significantly lower when W =t < 0:4.

Fig. 4 gives the postbuckling load-shortening and load–deflection curves for perfect and imperfect,
Si3N4/SUS304 moderately thick cylindrical shells with different values of volume fraction index
N( = 0.2, 1.0 and 2.0) under combined loading case (2) with the load-proportional parameter b2 = 0.0
and 0.01, and under thermal environmental condition TU = 600 K and TL = 300 K. It can be seen that
Table 5
Imperfection sensitivity k* for Si3N4/SUS304 shear deformable cylindrical shells subjected to axial compression in thermal
environments (R/t = 30, Z ¼ 500 and T0 = 300 K)

Thermal environmental conditions N W
�
/t

0.0 0.05 0.1 0.15 0.20

TU = 300 K, TL = 300 K 0.0 1.0 0.774 0.641 0.548 0.479
1.0 1.0 0.773 0.638 0.546 0.476
2.0 1.0 0.770 0.636 0.543 0.475

TU = 600 K, TL = 300 K 0.0 1.0 0.827 0.684 0.586 0.512
1.0 1.0 0.816 0.674 0.576 0.504
2.0 1.0 0.810 0.669 0.572 0.500

TU = 900 K, TL = 300 K 0.0 1.0 0.862 0.734 0.628 0.549
1.0 1.0 0.855 0.721 0.617 0.538
2.0 1.0 0.852 0.714 0.610 0.534
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the buckling loads are reduced with decreases in volume fraction index, and the postbuckling path becomes
significantly lower as N decreases.

Figs. 5 and 6 show, respectively, the effects of temperature field and volume fraction index on the post-
buckling behavior of the same cylindrical shells under combined loading case (1) with a = 1 (hydrostatic
pressure combined with axial compression) and the load-proportional parameter b1 = 0.0 and 9.0. It is seen
that an increase in pressure is usually required to obtain an increase in deformation, and the postbuckling
equilibrium path is stable for both perfect and imperfect shells, and the shell structure is virtually imperfec-
tion-insensitive.

Table 5 shows imperfection sensitivity of Si3N4/SUS304 moderately thick cylindrical shell with differ-
ent values of volume fraction index N subjected to pure axial compression and under three sets of ther-
mal environmental conditions. Here, k* is the maximum value of rx for the imperfect shell, made
dimensionless by dividing by the critical value of rx for the perfect shell. These results show that the
imperfection sensitivity of the shell becomes weaker as the temperature change increases. They also show
that the volume fraction index N only has a small effect on the imperfection sensitivity of the FGM cylin-
drical shell.
5. Concluding remarks

This paper give the first theoretical postbuckling analysis of shear deformable FGM cylindrical shells
subjected to combined axial and radial mechanical loads in thermal environments. The formulations are
based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic non-
linearity and, therefore, the transverse shear deformation is accounted for. Heat conduction and tempera-
ture-dependent material properties are both taken into account. Numerical results are for Si3N4/SUS304
and ZrO2/Ti–6Al–4V cylindrical shells. In effect, the results provide information about postbuckling behav-
ior of FGM shells for different proportions of the ceramic and metal under different sets of environmental
conditions. The results reveal that the temperature field and volume fraction distribution have a significant
effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the FGM
shell under combined loading conditions.
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Appendix A

In Eq. (22) [with C is defined as in Eq. (8b)]
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and in Eqs. (41)–(43)
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