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Abstract

A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length sub-
jected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent mate-
rial properties are both taken into account. The temperature field considered is assumed to be a uniform distribution
over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-
dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume
fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von
Karman-Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects
of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections
of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is
employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations
concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to
combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the
temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have
a small effect on the imperfection sensitivity of the functionally graded shell.
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1. Introduction

Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn
considerable attention. Typically, FGMs are made from a mixture of metals and ceramics and are further
characterized by a smooth and continuous change of the mechanical properties from one surface to an-
other. It has been reported that the weakness of the fiber reinforced laminated composite materials, such
as debonding, huge residual stress, locally largely plastic deformations, etc., can be avoided or reduced
in FGMs (Noda, 1991; Tanigawa, 1995). Hence, FGMs are possessed of an enormous application poten-
tial, especially for working in the high temperature environments. With the increased usage of these mate-
rials, it is important to understand the buckling and postbuckling behaviors of FGM cylindrical shells
subjected to mechanical loads in thermal environments.

Many initial postbuckling or fully nonlinear postbuckling studies of isotropic and composite laminated
cylindrical shells have been performed by the classical and/or shear deformation shell theory. However,
investigations on the buckling and postbuckling analysis of FGM cylindrical shells under thermal or
mechanical loading are limited in number. Shahsiah and Eslami (2003a,b) presented the buckling temper-
ature of simply supported FGM cylindrical shells under two cases of thermal loading, i.e. uniform temper-
ature rise, linear and nonlinear gradient through the thickness, based on the first order shear deformation
shell theory. In their analysis the material properties were considered to be independent of temperature.
Shen (2002, 2003) studied the buckling and postbuckling of FGM cylindrical thin shells subjected to axial
compression or lateral pressure in thermal environments. In the above studies, the material properties were
considered to be temperature-dependent and the effect of temperature rise on the postbuckling behavior
was reported. Recently, Shen (2004) gave a thermal postbuckling analysis of FGM cylindrical thin shells
subjected to a uniform temperature rise. It should be noted that in the above studies the shells are consid-
ered as being relatively thin and therefore the transverse shear deformation is usually not accounted for. On
the other hand, ceramics and the metals used in FGM do store different amounts of heat. This leads to a
non-uniform distribution of temperature through the plate thickness, especially when the plate is thick.
Hence the heat conduction usually occurs (Tanigawa et al., 1996; Kim and Noda, 2002), but it is not ac-
counted for in the above studies. This is because when the material properties are assumed to be functions
of temperature and position, and the temperature is also assumed to be a function of position, the problem
becomes very difficult.

The present work attempts to solve this problem, that is, to provide analytical solution for the post-
buckling of FGM cylindrical shell of finite length subjected to combined axial and radial loads in ther-
mal environments. Heat conduction and temperature-dependent material properties are both taken into
account. The temperature field considered is assumed to be a uniform distribution over the shell surface
and varied in the thickness direction only. Material properties are assumed to be temperature-depen-
dent, and graded in the thickness direction according to a simple power law distribution in terms of
the volume fractions of the constituents. The formulations are based on Reddy’s higher order shear
deformation shell theory with von Kdrman-Donnell-type of kinematic nonlinearity and including ther-
mal effects. The boundary layer theory suggested by Shen and Chen (1988, 1990) is extended to the case
of FGM cylindrical shells of finite length. A singular perturbation technique is employed to determine
the interactive buckling loads and postbuckling equilibrium paths. The nonlinear prebuckling deforma-
tions and initial geometric imperfections of the shell are both taken into account but, for simplicity, the
form of initial geometric imperfection is assumed to be the same as the initial buckling mode of the
shell. The numerical illustrations show the full nonlinear postbuckling response of FGM cylindrical
shells subjected to combined axial and radial mechanical loads and under different sets of environmen-
tal conditions.
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2. Theoretical development

Consider an FGM circular cylindrical shell with mean radius R, length L and thickness ¢, which is made
from a mixture of ceramics and metals. The shell is referred to a coordinate system (X, Y, Z) in which X and
Y are in the axial and circumferential directions of the shell and Z is in the direction of the inward normal
to the middle surface. The corresponding displacement are designated by U, V and W. ¥, and ¥, are the
rotations of the normals to the middle surface with respect to the Y- and X-axes, respectively. The origin of
the coordinate system is located at the end of the shell on the middle plane. The shell is assumed to be geo-
metrically imperfect, exposed to elevated temperature, and subjected to two loads combined out of a uni-
form external pressure ¢ and axial load P. Denoting the initial geometric imperfection by W (X,Y), let W
(X, Y) be the additional deflection and F(X,Y) be the stress function for the stress resultants defined by
N,=F,,, N,=F, and N,, = —F,,, where a comma denotes partial differentiation with respect to the
corresponding coordinates.

We assume that the composition is varied from the outer to the inner surface, i.e. the outer surface
(Z = —1t/2) of the shell is ceramic-rich whereas the inner surface (Z = ¢/2) is metal-rich. In such a way,
the effective material properties P, like Young’s modulus E or thermal expansion coefficient o, can be ex-
pressed as

P=PV.+PyVm (1)

Xy

in which P, and P, denote the temperature-dependent properties of the ceramic and metal, respectively,
and may be expressed as a function of temperature (Touloukian, 1967)
P=Py(P T +1+PT+P,T*+P;T%) (2)

in which 7= T, + AT and T, = 300 K (room temperature), Py, P_;, P;, P, and P5 are the coefficients of
temperature 7 (K) and are unique to the constituent materials.
V. and V,, are the ceramic and metal volume fractions and are related by

Vet V=1 (3)
and we assume the volume fraction V;, follows a simple power law as
2Z +1\"
Vin = 4
(%55 @)

where the volume fraction index N dictates the material variation profile through the shell panel thickness
and may be varied to obtain the optimum distribution of component materials.

It is assumed that the effective Young’s modulus E and thermal expansion coefficient « are temperature-
dependent, whereas the thermal conductivity x is independent to the temperature. Poisson’s ratio v depends
weakly on temperature change and is assumed to be a constant. From Egs. (1)—-(4), one has

B2 1) = 87) ~ En(T)] (5) 4 BalD) (58)
o(2.1) = () = (D) () om(T) (sb)

K(Z) = (Ke — Knm) <222—;”)N + Ko (5¢)
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We assume that the temperature variation occurs in the thickness direction only and one dimensional tem-
perature field is assumed to be constant in the XY plane of the shell. In such a case, the temperature dis-
tribution along the thickness can be obtained by solving a steady-state heat transfer equation

& [’“Z) 32 0 (6)

This equation is solved by imposing boundary condition of T= Ty at Z= —¢/2 and T= T at Z =t/2.
The solution of this equation, by means of polynomial series, is

T(Z) =Ty + (T —Tu)n(Z) (7)

and
@) {2248 ke (2240 N K2 27 4+ 0\
e =c I\ (N + Do \ 21 QN + D2\ 21
3 27 4\ V! . e 27 4+ A\ S 27 4+ A\ sa)
GN+ D \ 2 @N+ D\ 2 GN+ Do\ 2
2 3 4 5
C=1- Kme Kine Kme ;+ Kme _ Kine (8b)

(N + D)x. (2N+l) (3N+1) (4N + D)t (5N + 1)x3
where Kk, = Ky, — K. In particular, for an isotropic material, Eq. (7) may then be expressed as

T T T, —T
U‘2|' L Lt u,

T(Z) = 9)

From Egs. (5a), (5b) and (7), it can be seen that now E., Ey,, o, and o, are all functions of temperature
and position.

Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the
transverse shear strains are assumed to be parabolically distributed across the shell thickness and which
contains the same number of dependent unknowns as in the first order shear deformation theory. Based
on Reddy’s higher order shear deformation theory with a von Karman—Donnell-type of kinematic nonlin-
earity and including thermal effects, the governing differential equations for an FGM cylindrical shell can
be derived in terms of a stress function F, two rotations ¥, and ¥,, and a transverse displacement W, along
with the initial geometric imperfection W . They are

T 11—

Zn(W) le(?) ZIS(?_V)“‘ZM(F)_ZIS(NT)_ZIG(M) EF (W—&-W*,F) (10)
Lo1(F) + Loy(P.) + Los(P,) — Loa(W) — Ls(N") +11_?W"“ = —%Z(W—i— QW W) (11)
Ly(W) + Ln(P,) — Lys(P,) + Lya(F) — Lys(N') — L3(S') =0 (12)
La(W) = Ly(P,) + Las(P,) + Las(F) — Lis(N') — Lag(S') = 0 (13)

where all the hnear operators IT4, ;( ) and the nonlinear operator L( ) are defined as in Shen and Li (2002).
The forces N moments M and higher-order moments P' caused by elevated temperature are defined
by
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[N, M, P, 4, T

—T —T =T /2 '

N, M, P, | = / 4, |(1,2,Z)AT(Z)dZ (14a)
. . —t/2

—T —T =T

_N xy xy ©oxy Lo d

5! M P

=T —T 4 |t

S, | =|M, ~37 P, (14b)

=T —T =T
Xy Xy L" xy

where AT = T(Z) — T is temperature rise from some reference temperature 7, at which there are no ther-
mal strains, and

A, On On 9 10
) Qn Q12 Q16 . 2(Z,T) )
y | = 12 Yn U 2(Z,T)
Ay O Ox Qe [0 0
where the thermal expansion coefficient o is given in detail in Eq. (5b), and
E(Z,T) VE(Z, T E(Z,T)
O :szzﬁv lezfvz), O = 0 =0, Q66:2(1+V) (16)

in which F is also given in detail in Eq. (5a).
The two end edges of the shell are assumed to be simply supported or clamped, so that the boundary
conditions areX =0, L:

W=%¥,=0M,=P,=0 (simply supported) (17a)

W=¥=%,=0 (clamped) (17b)
2nR o

N.dY + 2nRto, + nR*qa = 0 (17¢)

0

where ¢ = 0 and a = 1 for lateral and hydrostatic pressure loading case, respectively, and o, is the average
axial compressive stress, and M, is the bending moment, P, is the higher-order moment as defined in Reddy
and Liu (1985). Also, we have the closed (or periodicity) condition

27R A7/
/O 2—;de0 (18a)

or

mR\ O COF | OF .4 )\ oY, . 4 \o¥, 4 [ oW _ OW
| nyp tAng ) T\ Bu—3p8 ) o T\ Be—3ptn | oy —3p\Ba g TEngyE

W 1<6W>2 oW ow"

. =T P .
Tk a\ar ‘WW‘(AuNﬁAzzNy)]dY—O (180)
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Because of Eq. (18), the in-plane boundary condition ¥ = 0 (at X =0, L) is not needed in Eq. (17).
The average end-shortening relationship is defined as

27R LaU
f_ 27rRL 0 _dXdY
2R L ol . aZF . 4 . a? . ) a?
e [ (S () s ()
4 ( FW L @W\ 1w\ WW .
_E(E“W+E‘2W)_E<ﬁ) “ap oy~ (s H AN, ) axar (19)

In the above equations and what follows, the reduced stiffness matrices [4;], [B;;], [Dj;], [E]], [F;] and

(H;] (i, j=1, 2, 6) are functions of temperature and position, determined through relationships (Shen
and Li, 2002)

A'=A", BB=-A"'B, DD=D-BA'B, EE=—-A"'E, FF=F-EA'B,
H =H-EA'E (20)
where A4,;,B;; etc., are the shell stiffnesses, defined in the standard way (Reddy and Liu, 1985).

3. Analytical method and asymptotic solutions

Having developed the theory, we are now in a position to solve Eqgs. (10)—(13) with boundary condition
(17). Before proceeding, it is convenient first to define the following dimensionless quantities (with 7, in
Eqgs. (28) and (29) below are defined as in Shen and Li (2002))

x=nX/Ly=Y/R,f=L/nR,Z=L*/Rt, &= (*R/L*)[D! Djd di]"
(W, W) = e(W,W")/[D}, Dy Ap] "', F = &F/ D}, D]
(P, ) = & (P, V) (L/m)/[D} D3 43, 10 = (D}, + 2D4) D,
72 = (A} +Ag/2) /45, 14 = [DEZ/DTJ”Z, Vo4 = [Ail/A;2]l/2a s = —A /Ay
(731,741) = (L /7*)(Ass — 8Dss /> + 16Fss /1*, Ay — 8Daa /* + 16F 44 /1") / D}, (21)
(171,712) = (A7, A7 )RIA; A,/ D} D3]
(M., P,) = & (M., 4P, /3¢)(L* /) / D}, D}, Dy A A
by = 0./ Q[ROIDL Dy /AL AR 2y = q(3) LR (47,43 /4n|D}, D]
8, = (A/L)/(2/R)[D; D35, A55), 6, = (A/L)(3)*LR'" /4x[D}, D3, A}, A3,
in which 4T = A)T, are defined by

A} 2T A,
T = —/ [ ]T Z)dz 22
AI 1 2 LAy @) (22)

where T, = (Ty + T, — 2T,)/2, and the details of AI can be found in Appendix A.
The nonlinear Eqgs. (10)—(13) may then be written in dimensionless form as

4
&Ly (W) — eLin(W,) — eLis(W,) + &1 L1a(F) — p14F = Y LW + W F) + T4z (3)1/4)%183/2 (23)
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1
Lo (F) + y24Loa(Wx) + 72aLos(Wy) — €924Loa(W) + 9ouW o = — 57’24/32L(W +2W, W) (24)
eLyy (W) + Ln(¥x) — Las (W) + y1alaa(F) = 0 (25)
eLay(W) — Lo (V) + Las(¥y) + 714Laa(F) = 0 (26)

where all the dimensionless operators L, ) and L( ) are defined as in Shen and Li (2002).

For most FGMs [D},D5,4%,43,]'/* = 0.3t. Moreover, when Z = (L*/R¢) > 2.96, then from Eq. (21) ¢ < 1.
In particular, for homogeneous isotropic cylindrical shells, & = n/Zz\/12, where Z = (L*/Rt)[1 — ]1/ i
the Batdorf shell parameter, which should be greater than 2.85 in the case of classical linear buckling anal-
ysis (Batdorf, 1947). In practice, the shell structure will have Z > 10, so that we always have ¢ < 1. When
¢ <1, Egs. (23)(26) are of the boundary layer type, from which nonlinear prebuckling deformations, large
deflections in the postbuckling range, and initial geometric imperfections of the shell, can be considered

simultaneously.
The boundary conditions of Eq. (17) become
W=%¥,=0, M,=P,=0 (simply supported) (27a)
W=%.=%, (clamped) (27b)
2
;n 32 Oyt 20+ 3(3) g% = 0 (27¢)

and the closed condltlon becomes

| (OF OF oY, o ow orw
/o (@ —7sp B3 + V2 (szo o 75228 a—yy) €24 (V240 ) + Vézzﬁz ) + 9

1 ow ow ow
23’24/32< y) /24/32 6y +&(yr — VSVTI)T1‘| dy=0 (28)

In this section two loading conditions will be considered, so that the unit end-shortening relationship
may be written in two dimensionless forms as

3/4 - 21 pm PF 2F 2 v,
O = 87r2y24- 3/2/ / [(%4[3 BRI 2) + Vx4 (/511 ox + 72338 >

oW Fw\ 1 (oW ow ow*
— &)y (%11 ) + V244ﬁ2 ) 57 (6_x> RN + e(1347m — Vs?rz)Tl] drdy  (29a)

B 2n pm aZF 2 6‘1’ '{’
O =~ 4n2y24 1// [( 243 —“/saz>+/z4(7’511 ox =+ o >

Fw Fw\ 1 (ow ow aw*
— &)y (%11 o + V244ﬁ2 ) 57 ( o ) VM + e(y24vr1 — VsVn)TI] drxdy (29b)

By virtue of the fact that T is assumed to be uniform, the thermal coupling in Egs. (10)—(13) vanishes, but
terms in 77 intervene in Egs. (28) and (29).

Applying Egs. (23)(19), the postbuckling behavior of perfect and imperfect FGM cylindrical shells sub-
jected to combined axial and radial loads in thermal environments is determined by means of a singular
perturbation technique. The essence of this procedure, in the present case, is to assume that
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W =w(x,p,e) + W(x,&,,6) + W(x,(,p,e)
F=f(x,y,e)+ F(x,&,,6) + F(x,0,7,¢)
Vo =y (x,p,8) + Palx, & yre) + Polx,(py2)
Yy =, (x,,8) + Py(x, &, p,) + Py(x, (. 0)

where ¢ is a small perturbation parameter (provided Z > 2.96) as defined in Eq. (21) and w(x,y,¢), flx,y,¢),
Yu(x,p,¢), and ¥, (x,y,¢) are called the outer or regular solutions of the shell. W (x,¢,y,¢), F(x, ¢, p,¢),
V. (x,&p,¢), Vylx,Ep¢) and W(x,(,py,¢), F(x,(,y,8), Pu(x,(,3,¢), P,(x,{,p,¢) are the boundary layer
solutions near the x = 0 and x = & edges, respectively, and £ and { are the boundary layer variables, defined
as

(30)

E=x/ve, (=(n-x)/Ve (31)

This means that for homogeneous isotropic cylindrical shells, the width of the boundary layers is of
order v/Rt. In Eq. (30) the regular and boundary layer solutions are taken in the forms of perturbation
expansions as

X y, 26//2"‘}//2 X y f X, Y, & 28]/2]3/2 X y)

(32a)
«(%,,8) ZS J/2xy) xy, Z‘S] //zxy)
x éya Z?]/ +1W/2+1 g )7 ﬁ(xv ivyag) :ZS//2+2ﬁj/2+2(xvéay)
=0
(32b)
x, &, Y, € ZC(HS /2 (/+3 /2( <, ,V)a X7C7y,8 28//2+2 j/2+2( 7£ay)
x,(,p,¢) Z W (6 Gy), FxGy,e) Z &F 0,0 (x, ()
J=
(32¢)
«(xCyse ZSUH /2 (,+3 /2( Ly), x,(y,e) = Z“"]/Hz /2+2(xaC7J’)
The initial buckling mode is assumed to have the form
wi(x,y) = A sin mx sin ny (33)
and the initial geometric imperfection is assumed to have a similar form
W*(x,y,¢) = &d}, sinmxsinny = A\ sin mx sin ny (34)

where i = aj, /4\} is the imperfection parameter.

Substituting Egs. (30)—(32) into Egs. (23)—(26), collecting the terms of the same order of ¢, three sets of
perturbation equations are obtained for the regular and boundary layer solutions, respectively. It has been
shown (Shen and Chen, 1988, 1990) that the effect of the boundary layer on the buckling load of the shell
under axial compression is quite different from that of the shell subjected to external pressure. To this end,
two kinds of loading conditions will be considered.

Case (1): high values of external pressure combined with relatively low axial load. Let

P
nR*q

= b (35a)
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or
24 b
4 1/4p8 3/2 = ?1 (35b)
3 (3) )LqS /
In this case, the boundary condition of Eq. (27¢) becomes
1 2 az 2 14, 3 _
7 [3 3 (3) e (a+b)=0 (36)

For convenience we replace (a + b;) with a; in Eq. (38) below, by using Egs. (33) and (34) to solve these
perturbation equations of each order, and matching the regular solutions with the boundary layer solutions
at the each end of the shell, so that the asymptotic solutions satisfying the clamped boundary conditions are
constructed as

W =g [A(()‘Z/z) — A8 <a((fl/2 Cos ¢ \/_+ al}/? sin ¢ \/_) exp < 19\2)

3/2 3/2) (3/2) .- mT—X m—
—Af)o/ ><a((n/ cosqﬁTJral/ smq5\/5> exp (—19\/;>] +é& [A“) smmxsmny}

+¢ [ 131) smmxsmny} +¢ [Aé‘(? —i—A(ﬁ) sinmxsinn)H—Ag(‘)> cos2mx—|—A$> cos2ny} +0(&%) (37)
e 3 2
F:——B’O0 (ﬁx +a >+8{— (ﬁx +a 2)] + & [ <ﬁx +a 2) +B§21)sinmxsinny}
+ &2 [A 3/2) (b(s/z cosqb\[ b2 smq’;\[) exp (—19%)
+A3/2 bs/2 cosq’) 5/2 s1nq’> exp 9 + & |- B x> +a y—z
\/_ \/_ NG 00 )

1
+&t {—EB((;(? (ﬁ ¥ +a 2) + B cos 2mx + B.)) c0s2ny] +0(&%) (38)

¥ = ¢ |C? cosmxsinny + cos p—— sin e 9
& [ I mx sin ny co1 ¢\/E+clo ¢\/§ Xp 7
(2 3)

—Xx T —
+1c cosq’>—+c sm¢> )exp( 19—)} + & [C cos mx sin ny|
< 01 \/’ 10 \/5 \/(;' 11
+ 1 [CYY cos mx sin ny + C) sin 2mx] + O(&”) (39)

¥, =g {Dﬁ) sin mx cos ny} + & [D(ﬂ) sin mx cos ny} + & {D(ﬁ) sin mx cos ny + Dl sin 2ny} +0()
(40)
Note that, because of Eq. (37), the prebuckling deformation of the shell is nonlinear, and all of the coef-
ficients in Egs. (37)—(40) are related and can be expressed in terms of A§21>, but for the sake of brevity the
detailed expressions are not shown, whereas 9 and ¢ are given in detail in Appendix A.

Next, upon substitution of Egs. (37)—(40) into the boundary condition (36) and into Eq. (29a), the post-
buckling equilibrium paths can be written as

by =5 ()" [sz) +2P e + - } (41)
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and
(0) (2) 2 2
8, =0 = o + o (4) + - (42)

In Egs. (41) and (42), (A11 &%) is taken as the second perturbation parameter relating to the dimensionless
maximum deflection. If the maximum deflection is assumed to be at the point (x,y) = (n/2m,7/2n), then

Aﬁ)sz:Wm—@an-F'“ (43a)
where Wy, is the dimensionless form of the maximum deflection of the shell that can be written as
1 t w
Wm = 6 & * gk g% 11/4 -+ @2 (43b)
3| (D Dypdy Ay

All symbols used in Egs. (41)—(43) and Egs. (50)—(52) below are also described in detail in Appendix A.
Case (2): high values of axial compression combined with relatively low external pressure. Let

2
”1; 1_, (44a)
or
10) e

. (44b)

In this case, the boundary condition of Eq. (27¢c) becomes
1 OF
7/ /32 - dy + 22,e(1 + ab,) = 0 (45)
27[ 0

Similarly, by takmg a, = 2b,/(1 + ab,) and using a singular perturbation procedure, the asymptotic solu-
tions satisfying the clamped boundary conditions are obtained as

W=e {A&) - A(()o) (afn) cos qS 7 + am sin ¢ \/_> exp <—19 \)/C;>
—Aoo (afn cosqﬁT—i—am smdﬁ 7 > exp ( 19”—\}5)}

x
+ ¢ {A“ sin mx sin ny + A} cos 2ny — (45} cos 2ny) (%1 cos qﬁ— + al}) sin qS— exp | —U—
Ve Ve Ve

— (4% cos 2ny) <a(()1 cosqi>7+alo sin ¢ = Ve )eXp < 19”_\;;)]

+ & {Aﬁ) sin mx sin ny + A02 cos 2ny} +é [AOO + Aﬁ) sin mx sin ny + A%) cos 2mx + Ag? cos 2ny
+ A sin mx sin 3ny + A cos 4ny} +0(&%) (46)

1 1 1 . .
F= =3By (@ +)) + {_ 5B (@p + yz)} + {_ 5B (@B +32) + B} sinmy sin ny

+AOO < o1 COS ¢7+b10 smq,’y\/_) exp (19%)
+A00 ( 01 COS¢7+b10 sn(f) \/E )exp <_19n_\;;>:|
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1 X
+é& {— 535? (a2 +3*) + B} cos 2ny + (45 cos 2ny) (bm cos (,b 7 + 1) sin ¢ \/_> exp <—19%>

+ (45 cos2ny)<bél)cosq57+bmsnd> NG )exp( 19”—\;;)]

1 . .
+¢&* [— ~BY (a:°x* +y7) + B\}) cos 2mx + BY}) cos 2ny + BY sin mx sin 3ny} +0(&%) (47)

2

P, =2 {A(()O)c(lz/z sin qb% exp < 19\/_> + AL smq’>n\;5x exp <— n\;g ﬂ + &2[CY cos mux sin ny]

+85/2|:A( cos 2ny)c\>/? sin ¢ — exp< 75‘1>+ A cos 2ny)cly Vsingp T~ exp< ﬂuﬂ
( 02 ) 10 \/— \/5 ( 02 ) 10 \/— \/E

+ &[CY cos mxsin ny] + ¢ [Cﬁ) cos mx sinny + Cly) sin 2mx + C'% cos mx sin 3ny} +0(&) (48)

P, = ¢ {Dﬁ) sin mx cos ny} +é [D(ﬁ) sin mx cos ny + DS} sin 2ny

- ( $2npsin 2ny) (dm cos ¢ \/_+ d\y) sin ¢ \/_> exp (—19\2)

_( 022nﬁs1n2ny) (dm cosqS \[ +d10 smd) G >exp< 1971\;;)]

+eé { D\ 51nmxcosny+D Y sin 2ny + D\Y 13 sin mx cos 3ny} +0(&) (49)

Next, upon substitution of Egs. (46)—(49) into the boundary condition (45) and into Eq. (29b), the post-
buckling equilibrium paths can be written as

1

2 q 2
I =T an Vo~ A AT + A A ] (50)
and
3y =0 — 0" + 02 (4)e) + oW (AYe)! + - - (51)

In Egs. (50) and (51), similarly, (A<121>e) is taken as the second perturbation parameter in this case, and we
have

AVe=w,, — O W2 + - (52a)
and the dimensionless maximum deflection of the shell is written as

mzl ;K%-@At (52b)
& [D71D§2AT1A§2]1/4 !

Eqgs. (41)—(43) and (50)—(52) can be employed to obtain numerical results for full nonlinear postbuckling
load-shortening or load—deflection curves of FGM cylindrical shells subjected to combined axial and radial
loads in thermal environments. Buckling under external pressure and buckling under axial compression
follow as two limiting cases. By increasing b; and b, respectively, the interaction curve of an FGM
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cylindrical shell under combined loading can be constructed with these two lines. Note that since b, = 1/b,
only one load-proportional parameter should be determined in advance. The initial buckling load of a per-
fect shell can readily be obtained numerically, by setting " /¢ = 0 (or u = 0), while taking /¢ = 0 (note
that W, # 0). In this case, the minimum buckling load is determined by considering Eq. (41) or (50) for
various values of the buckling mode (i,n), which determine the number of half-waves in the X-direction
and of full waves in the Y-direction.

4. Numerical results and discussions

Numerical results are presented in this section for FGM cylindrical shells with two constituent materials.
Two sets of material mixture are considered. One is silicon nitride and stainless steel, referred to as SisN,/
SUS304, and the other is zirconium oxide and titanium alloy, referred to as ZrO,/Ti-6Al-4V. However, the
analysis is equally applicable to other types of FGMs as well. Typical values for Young’s modulus E (in Pa),
thermal expansion coefficient o (in K™') and the thermal conductivity x (in W/mK) of these materials are
listed in Table 1 (from Reddy and Chin, 1998). Poisson’s ratio v is assumed to be a constant, and v = 0.28.

The accuracy and effectiveness of the present method for the buckling and postbuckling analysis of iso-
tropic or multilayered cylindrical shells subjected to combined loading of external pressure and axial com-
pression were examined by many comparison studies given in Shen and Chen (1991), Shen et al. (1993), and
Shen (1997, 2001). In addition, the buckling hoop stresses for isotropic thin cylindrical shells subjected to

Table 1
Temperature-dependent coefficients for ceramics and metals, from Reddy and Chin (1998)
Materials Py P, Py P, Py
Zirconia E 244.27e+9 0 —1.371e-3 1.214e—6 —3.681e—10
o 12.766e—6 0 —1.491e-3 1.006e—5 —6.778e—11
K 1.7000 - - - -
Silicon nitride E 348.43e+9 0 —3.070e—4 2.160e—7 —8.946e—11
o 5.8723e—6 0 9.095¢—4 0 0
K 13.723 - - - -
Ti-6A1-4V E 122.56e+9 0 —4.586e—4 0 0
o 7.5788¢e—6 0 6.638¢—4 —3.147¢—6 0
K 1.0000 - - - -
Stainless steel E 201.04e+9 0 3.079¢—4 —6.534e—7 0
o 12.330e—6 0 8.086e—4 0 0
K 15.379 - - - -

Table 2
Comparisons of buckling stresses (), (in N/mm?) for perfect isotropic thin cylindrical shells subjected to combined axial and radial
loads (R = 254 mm, E = 204 kN/mm?, v =0.3)

L/R R/t by Present Galletly et al. (1987)
0.418 304 8 53.706 (15) 58.3 (15)
0.415 308 4 70.531 (16) 78.8 (16)
0.418 304 1.05 92.377 (16) 97.2 (17)
0.415 304 0 103.116 (17) 108.0 (17)




H.-S. Shen, N. Noda | International Journal of Solids and Structures 42 (2005) 4641-4662 4653

combined axial and radial loads are calculated and compared in Table 2 with the results obtained by
Galletly et al. (1987) based on the classical shell theory, in which (a,)., is defined by g..(R/?). The material
properties adopted are E = 204 kN/mm? and v = 0.3. It can be seen that the present results agree well but
slightly lower than those of Galletly et al. (1987).

The buckling loads (6¢.g..) (in MPa) for perfect SizN,/SUS304 and ZrO,/Ti-6Al1-4V thin and moder-
ately thick cylindrical shells under four sets of combined loading conditions, i.e. lateral pressure alone
(b1 = 0), combined loading case (1) (b; = 10), combined loading case (2) (b, = 0.01) and axial compression
alone (b, =0), and under three sets of environmental conditions, i.e. 1: Ty =300 K, 71 =300 K, 2:
Ty =600 K, T1. =300 K, and 3: Ty =900 K, 71 =300 K, are calculated and compared in Tables 3
and 4. In computation, the shell radius-to-thickness ratio R/t = 300 and 30, Z = 500 and T, = 300 K. Also,
three values of the volume fraction index N (=0.2, 1.0 and 2.0) are considered. It is seen that, for the
Si3N4/SUS304 cylindrical shell, the buckling loads are reduced with increases in temperature and with de-
creases in volume fraction index. In contrast, for the ZrO, /Ti-6A1-4V cylindrical shell, the buckling load is
lower than that of the SizN, /SUS304 shell and erratic behavior can be observed in thermal environmental
conditions 2 and 3. Therefore, SisN, /SUS304 cylindrical shells are considered in the parametric study only.
Typical results are shown in Figs. 1-6. It is mentioned that in all figures " /¢ denotes the dimensionless
maximum initial geometric imperfection of the shell.

Table 3
Comparisons of buckling loads (o¢;,gc,) (in MPa) for SisN,/SUS304 and ZrO,/Ti-6A1-4V thin cylindrical shells subjected to combined
axial and radial loads in thermal environments (R/t = 300, Z = 500 and T, = 300 K)

Materials N Ty =300 K, Ty = 300 K Ty =600 K, Ty = 300 K Ty =900 K, Ty = 300 K
Si;N,/SUS304 0.2 (400.462, 0) (246.056, 0) (183.825, 0)
(394.361, 0.026) (217.875, 0.015) (99.964, 0.007)
(126.572, 0.084) (125.321, 0.084) (125.530, 0.084)
(0, 0.110) (0, 0.109) (0, 0.108)
1.0 (461.427, 0) (299.752 0) (206.328, 0)
(425.393, 0.028) (280.897, 0.019) (133.933, 0.009)
(145.110, 0.097) (140.988, 0.094) (138.753, 0.093)
(0, 0.126) (0, 0.122) (0, 0.119)
2.0 (489.047, 0) (328.230, 0) (216.454, 0)

(448.927, 0.030)
(152.776, 0.102)

(312.739, 0.021)
(147.709, 0.098)

(152.492, 0.010)
(143.878, 0.096)

(0, 0.132) (0, 0.127) (0, 0.123)
Z10,/Ti-6A1-4V 0.2 (204.983, 0) (108.364 0) (155.058, 0)

(189.945, 0.013) (89.714, 0.006) (126.939, 0.008)
(64.795, 0.043) (61.430, 0.041) (63.677, 0.042)
(0, 0.056) (0, 0.053) (0, 0.052)

1.0 (238.124, 0) (112.236, 0) (110233, 0)
(219.464, 0.015) (31.805, 0.002) (43.875, 0.003)
(74.863, 0.050) (66.923, 0.045) (88.612, 0.059)
(0, 0.065) (0, 0.057) (0, 0.057)

2.0 (253.184, 0) (156.431, 0) (248.205, 0)

(232.300, 0.015)
(79.017, 0.053)
(0, 0.068)

(32.430 0.002)
(69.249, 0.046)
(0, 0.058)

(93.396, 0.006)
(105.830, 0.071)
(0, 0.059)
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Table 4
Comparisons of buckling loads (a¢,qc;) (in MPa) for SizN4/SUS304 and ZrO,/Ti-6A1-4V shear deformable cylindrical shells subjected
to combined axial and radial loads in thermal environments (R/¢ = 30, Z = 500 and T, = 300 K)

Materials N Ty =300 K, T, =300 K Ty =600 K, T, =300 K Ty =900 K, T, =300 K
SisNL/SUS304 0.2 (4110.570, 0) (3790.912, 0) (3493.155, 0)
(3865.174, 2.577) (3785.175, 2.523) (3461.331, 2.308)
(1248.377, 8.323) (1230.890, 8.206) (1216.803, 8.112)
(0, 11.061) (0, 10.905) (0, 10.779)
1.0 (4735.332, 0) (4340.688, 0) (3954.151, 0)
(4420.001, 2.947) (4281.516, 2.854) (3930.001, 2.620)
(1427.560, 9.571) (1383.632, 9.224) (1348.004, 8.987)
(0, 12.648) (0, 12.258) (0, 11.942)
2.0 (5018.193, 0) 4589.686, 0) 4163.306, 0)

(4654.402, 3.103)
(1503.253, 10.022)
(0, 13.319)

1447.439, 9.650)

(
(4479.271, 2.986)
(
(0, 12.824)

1402.305, 9.349)

(
(4142.397, 2.762)
(
(0, 12.423)

ZrO,/Ti-6A1-4V 0.2 (2103.800, 0) (1821.338 0) (1535.098, 0)
(1978.769, 1.319) (1816.877, 1.211) (1430.851, 0.954)
(639.104, 4.261) (601.610, 4.011) (588.425, 3.923)
(0, 5.662) (0, 5.330) (0, 5.210)
1.0 (2443.689, 0) (1779.783, 0) (2371.815, 0)
(2279.964, 1.520) (1745.206, 1.163) (1842.126, 1.228)
(736.376, 4.909) (642.136, 4.281) (609.899, 4.066)
(0, 6.524) (0, 5.688) (0, 5.385)
2.0 (2597.907, 0) (1783.359, 0) (2399.151, 0)
(2407.847, 1.605) (1727.501, 1.152) (1849.098, 1.233)
(777.672, 5.184) (658.553, 4.390) (618.903, 4.126)
(0, 6.890) (0, 5.833) (0, 5.455)
20 20
Si,N/SUS304 1:T,=300K, T, =300K Si,N/SUS304 1:T,=300K, T, =300K
R/t =300, Z = 500 2:T,=600K, T, =300K Rit =30, Z =500 2:T,=600K, T, =300K
15F T,=300K,N=20 3:T,=900K, T, =300K 15F T,=300K,N=20 3:T,=900K, T, =300K
1
1
ot 2 LT
05f 3 05
0.0 : : 0.0
00 05 10 15 0.0 05 10 15
@) R, (b) Ry

Fig. 1. Interaction buckling curves for SizN,/SUS304 cylindrical shells subjected to combined axial and radial loads in three different
sets of thermal environments: (a) thin shells; (b) shear deformable shells.
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20 2.0
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R/t =300, Z = 500, T, = 300K 2N=10 RIt =30, Z =500, T, = 300 K 2 N=10
15} T,=600K, T, =300K 3 N=02 15} T,=600K, T, =300K 3N=02
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0.0
15 0.0 0.5 1.0 15
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Fig. 2. Effect of volume fraction index N on the interaction buckling curves for Si;N,/SUS304 cylindrical shells subjected to combined
axial and radial loads in thermal environments: (a) thin shells; (b) shear deformable shells.
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Fig. 3. Effect of temperature rise on the postbuckling behavior of SizN,/SUS304 cylindrical shells subjected to axial compression
combined with lateral pressure: (a) load-shortening; (b) load—deflection.

Fig. 1 shows the effects of temperature field on the interaction buckling curves of SizN,/SUS304 thin and
moderately thick cylindrical shells under combined loading cases, in which R, = ¢/q. and R, = 6,/0,,
where ¢, and o, are critical buckling loads for the shell with N = 0 under lateral pressure alone or axial
compression alone, and under environmental condition 7y = 300 K and 77, = 300 K. Then Fig. 2 shows
the effects of volume fraction index on the interaction buckling curves of SizN4/SUS304 thin and moder-
ately thick cylindrical shells under environmental condition Ty = 600 K and 71 = 300 K. It is seen that
the temperature field or volume fraction index has a significant effect on the shape of the interaction buck-
ling curves. Of particular interest is the change from concave to convex behavior for the thin shell (see Figs.
1(a) and 2(a)).

Fig. 3 gives the postbuckling load-shortening and load—deflection curves for perfect (W /t = 0) and
imperfect (W' /t = 0.05), Si;N,/SUS304 moderately thick cylindrical shells (R/z = 30) with volume fraction
index N = 2.0 under combined loading case (2) with the load-proportional parameter b, = 0.0 (referred to
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Fig. 4. Effect of volume fraction index N on the postbuckling behavior of Si3N4/SUS304 cylindrical shells subjected to axial
compression combined with lateral pressure: (a) load-shortening; (b) load—deflection.
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Fig. 5. Effect of temperature rise on the postbuckling behavior of Siz;N,/SUS304 cylindrical shells subjected to hydrostatic pressure
combined with axial compression: (a) load-shortening; (b) load—deflection.

as I) and 0.01 (referred to as II), and under three sets of thermal environmental conditions. It can be seen
that the well-known “‘snap-through” behavior of shells occurs and the imperfection sensitivity can be pre-
dicted. Note that the postbuckling equilibrium path of the FGM shell is similar to that of the shell made
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Fig. 6. Effect of volume fraction index N on the postbuckling behavior of SizN4/SUS304 cylindrical shells subjected to hydrostatic
pressure combined with axial compression: (a) load-shortening; (b) load—deflection.

from homogeneous isotropic materials. Clearly the buckling loads are reduced with increases in tempera-
ture, and the postbuckling load—deflection curve becomes significantly lower when W/t < 0.4.

Fig. 4 gives the postbuckling load-shortening and load—deflection curves for perfect and imperfect,
Si3sN,/SUS304 moderately thick cylindrical shells with different values of volume fraction index
N(=0.2, 1.0 and 2.0) under combined loading case (2) with the load-proportional parameter b, = 0.0
and 0.01, and under thermal environmental condition Ty = 600 K and 77, = 300 K. It can be seen that

Table 5

Imperfection sensitivity A* for SizN,/SUS304 shear deformable cylindrical shells subjected to axial compression in thermal
environments (R/t = 30, Z = 500 and T, = 300 K)

Thermal environmental conditions N Wt
0.0 0.05 0.1 0.15 0.20
Ty =300 K, Tp. =300 K 0.0 1.0 0.774 0.641 0.548 0.479
1.0 1.0 0.773 0.638 0.546 0.476
2.0 1.0 0.770 0.636 0.543 0.475
Ty =600 K, T =300 K 0.0 1.0 0.827 0.684 0.586 0.512
1.0 1.0 0.816 0.674 0.576 0.504
2.0 1.0 0.810 0.669 0.572 0.500
Ty =900 K, T =300 K 0.0 1.0 0.862 0.734 0.628 0.549
1.0 1.0 0.855 0.721 0.617 0.538
2.0 1.0 0.852 0.714 0.610 0.534
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the buckling loads are reduced with decreases in volume fraction index, and the postbuckling path becomes
significantly lower as N decreases.

Figs. 5 and 6 show, respectively, the effects of temperature field and volume fraction index on the post-
buckling behavior of the same cylindrical shells under combined loading case (1) with ¢ =1 (hydrostatic
pressure combined with axial compression) and the load-proportional parameter b; = 0.0 and 9.0. It is seen
that an increase in pressure is usually required to obtain an increase in deformation, and the postbuckling
equilibrium path is stable for both perfect and imperfect shells, and the shell structure is virtually imperfec-
tion-insensitive.

Table 5 shows imperfection sensitivity of SisN4/SUS304 moderately thick cylindrical shell with differ-
ent values of volume fraction index N subjected to pure axial compression and under three sets of ther-
mal environmental conditions. Here, A* is the maximum value of o, for the imperfect shell, made
dimensionless by dividing by the critical value of o, for the perfect shell. These results show that the
imperfection sensitivity of the shell becomes weaker as the temperature change increases. They also show
that the volume fraction index N only has a small effect on the imperfection sensitivity of the FGM cylin-
drical shell.

5. Concluding remarks

This paper give the first theoretical postbuckling analysis of shear deformable FGM cylindrical shells
subjected to combined axial and radial mechanical loads in thermal environments. The formulations are
based on a higher order shear deformation shell theory with von Karman-Donnell-type of kinematic non-
linearity and, therefore, the transverse shear deformation is accounted for. Heat conduction and tempera-
ture-dependent material properties are both taken into account. Numerical results are for SizN,/SUS304
and ZrO,/Ti-6Al-4V cylindrical shells. In effect, the results provide information about postbuckling behav-
ior of FGM shells for different proportions of the ceramic and metal under different sets of environmental
conditions. The results reveal that the temperature field and volume fraction distribution have a significant
effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the FGM
shell under combined loading conditions.
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Appendix A
In Eq. (22) [with C is defined as in Eq. (8b)]

t
AT = ——
A

(0e(Tu)[Em(TL) — Ec(Tv)]

{[am(m ~ o (To)En(Tr) ~ BT g7 +

+ BT o) am(TL) — 2(T0)]) NLH + :xC(TU)EC(TU)} (for Ty = 0) (A.la)
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Sy = gosl(4+ 9+ 417) + Co(1+20)] + 8m* (1 + ) 2+ gy
S5 = g136[Co(1+ 3+ 1) + Cs(4+2p0) + (1 + )] + 206 [C5 (6 + 8+ 244°) — (2p+ 317 + 1))
S13=28136Co — gos (1 + 11)

m? m? + 5a;n? m? +9an? f*

C=—— 5 Cs= ) Co = A2
’ m? + anff* ’ m? + ayn?f3? ’ m? 4 a;n? (A-2)

in the above equations [with g; and g;; are defined as in Shen and Li (2002)]

1/2
b= {M} / d= V14“/z4“/zzoﬁ v= [u} : ¢= [ﬂ] :
21 : 216’ ’ 2

2
) Y
aéll) = 1761%) = Eg”’ b(<)2|) = V24819 b%) =V $gzo (A.3)
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b =+ [y P + af206d + (20— 06 + ")
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